English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic mercury vapor inside a hollow-core photonic crystal fiber

MPS-Authors
/persons/resource/persons201225

Vogl,  Ulrich
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201153

Peuntinger,  Christian
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201100

Joly,  Nicolas Y.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  Philip St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201126

Marquardt,  Christoph
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vogl, U., Peuntinger, C., Joly, N. Y., Russell, P. S. J., Marquardt, C., & Leuchs, G. (2014). Atomic mercury vapor inside a hollow-core photonic crystal fiber. OPTICS EXPRESS, 22(24), 29375-29381. doi:10.1364/OE.22.029375.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6476-C
Abstract
We demonstrate high atomic mercury vapor pressure in a kagome-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 6(3)P(2) - 6(3)D(3) transition, corresponding to an atomic mercury number density of 6 x 10(10) cm(-3). The use of mercury vapor in quasi one-dimensional confinement may be advantageous compared to chemically more active alkali vapor, while offering strong optical nonlinearities in the ultraviolet region of the optical spectrum. (C) 2014 Optical Society of America