Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coherent Interaction of Light and Single Molecules in a Dielectric Nanoguide

MPG-Autoren
/persons/resource/persons201058

Faez,  Sanli
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201216

Tuerschmann,  Pierre
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201077

Haakh,  Harald R.
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201072

Goetzinger,  Stephan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201175

Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Faez, S., Tuerschmann, P., Haakh, H. R., Goetzinger, S., & Sandoghdar, V. (2014). Coherent Interaction of Light and Single Molecules in a Dielectric Nanoguide. Physical Review Letters, 113: 213601. doi:10.1103/PhysRevLett.113.213601.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-647A-4
Zusammenfassung
Many of the currently pursued experiments in quantum optics would greatly benefit from a strong interaction between light and matter. Here, we present a simple new scheme for the efficient coupling of single molecules and photons. A glass capillary with a diameter of 600 nm filled with an organic crystal tightly guides the excitation light and provides a maximum spontaneous emission coupling factor (beta) of 18% for the dye molecules doped in the organic crystal. A combination of extinction, fluorescence excitation, and resonance fluorescence spectroscopy with microscopy provides high-resolution spatio-spectral access to a very large number of single molecules in a linear geometry. We discuss strategies for exploring a range of quantum-optical phenomena, including polaritonic interactions in a mesoscopic ensemble of molecules mediated by a single mode of propagating photons.