Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Taking Two-Photon Excitation to Exceptional Path-Lengths in Photonic Crystal Fiber

MPG-Autoren
/persons/resource/persons201057

Euser,  Tijmen G.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  Philip St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Williams, G. O. S., Euser, T. G., Arlt, J., Russell, P. S. J., & Jones, A. C. (2014). Taking Two-Photon Excitation to Exceptional Path-Lengths in Photonic Crystal Fiber. ACS PHOTONICS, 1(9), 790-793. doi:10.1021/ph5002236.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-65AD-A
Zusammenfassung
The well-known, defining feature of two-photon excitation (TPE) is the tight, three-dimensional confinement of excitation at the intense focus of a laser beam. The extremely small excitation volume, on the order of 1 mu m(3) (1 femtoliter), is the basis of far-reaching applications of TPE in fluorescence imaging, photodynamic therapy, nanofabrication, and three-dimensional optical memory. Paradoxically, the difficulty of detecting photochemical events in such a small volume is a barrier to the development of the two-photon-activated molecular systems that are essential to the realization of such applications. We show, using two-photon-excited fluorescence to directly visualize the excitation path, that confinement of both laser beam and sample solution within the 20 mu m hollow core of a photonic crystal fiber permits TPE to be sustained over an extraordinary path-length of more than 10 cm, presenting a new experimental paradigm for ultrasensitive studies of two-photon-induced processes in solution.