English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Geometrical optimization and contact configuration in radial pn junction silicon nanorod and microrod solar cells

MPS-Authors
/persons/resource/persons201040

Christiansen,  S.
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Voigt, F., Stelzner, T., & Christiansen, S. (2013). Geometrical optimization and contact configuration in radial pn junction silicon nanorod and microrod solar cells. PROGRESS IN PHOTOVOLTAICS, 21(8), 1567-1579. doi:10.1002/pip.2231.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-66E1-8
Abstract
Electric charge transport simulations of symmetrically doped radial pn junction silicon nanorod solar cells were performed using the Technology Computer-aided Design software suite by Silvaco. Two schemes of electric contacting were applied, the first one consisting of a cathode wrapped around the cladding of the rod and the second one in a cathode located only on the top rod surface. In both cases, the anode was implemented just below the bottom end of the p-type rod core. P-type cores and n-type shells of the rods were assumed, with dopant densities of 10(18)cm(-3) in both regions. The location of the pn junction was chosen such that well-formed space charge regions could be established with the outer end of the n-type depletion region being adjacent to the cylindric surface of the nanorod. Rod radii and rod lengths were varied and optimized in a three-step process for both types of contacting schemes. It was found that inhomogeneous carrier generation profiles diminish the open-circuit voltage in case of a wrapped cathode configuration. Most realistic is the usage of a top contact configuration with rod radii of 2 mu m and lengths of around 100 mu m, leading to a cell efficiency of about 15%. Further enhancement of performance is expected, if light trapping of the nanorod layer is taken into account and photonic light harvesting is applied. Copyright (c) 2012 John Wiley & Sons, Ltd.