English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Long-distance laser propulsion and deformation-monitoring of cells in optofluidic photonic crystal fiber

MPS-Authors
/persons/resource/persons201219

Unterkofler,  Sarah
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201068

Garbos,  Martin K.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201057

Euser,  Tijmen G.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  Philip St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Unterkofler, S., Garbos, M. K., Euser, T. G., & Russell, P. S. J. (2013). Long-distance laser propulsion and deformation-monitoring of cells in optofluidic photonic crystal fiber. SI, 6(9), 743-752. doi:10.1002/jbio.201200180.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-6715-E
Abstract
We introduce a unique method for laser-propelling individual cells over distances of 10s of cm through stationary liquid in a microfluidic channel. This is achieved by using liquid-filled hollow-core photonic crystal fiber (HC-PCF). HC-PCF provides low-loss light guidance in a well-defined single mode, resulting in highly uniform optical trapping and propulsive forces in the core which at the same time acts as a microfluidic channel. Cells are trapped laterally at the center of the core, typically several microns away from the glass interface, which eliminates adherence effects and external perturbations. During propagation, the velocity of the cells is conveniently monitored using a non-imaging Doppler velocimetry technique. Dynamic changes in velocity at constant optical powers up to 350 mW indicate stress-induced changes in the shape of the cells, which is confirmed by bright-field microscopy. Our results suggest that HC-PCF will be useful as a new tool for the study of single-cell biomechanics. ((c) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)