Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Increasing the Dimensionality of Quantum Walks Using Multiple Walkers

MPG-Autoren
/persons/resource/persons201168

Rohde,  Peter P.
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201185

Schreiber,  Andreas
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201196

Silberhorn,  Christine
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rohde, P. P., Schreiber, A., Stefanak, M., Jex, I., Gilchrist, A., & Silberhorn, C. (2013). Increasing the Dimensionality of Quantum Walks Using Multiple Walkers. SI, 10(7), 1644-1652. doi:10.1166/jctn.2013.3104.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-674D-1
Zusammenfassung
We show that with the addition of multiple walkers, quantum walks on a line can be transformed into lattice graphs of higher dimension. Thus, multi-walker walks can simulate single-walker walks on higher dimensional graphs and vice versa. This exponential complexity opens up new applications for present-day quantum walk experiments. We discuss the applications of such higher-dimensional structures and how they relate to linear optics quantum computing. In particular we show that multi-walker quantum walks are equivalent to the BOSONSAMPLING model for linear optics quantum computation proposed by Aaronson and Arkhipov. With the addition of control over phase-defects in the lattice, which can be simulated with entangling gates, asymmetric lattice structures can be constructed which are universal for quantum computation.