English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantum versus classical polarization states: when multipoles count

MPS-Authors
/persons/resource/persons201174

Sanchez-Soto,  L. L.
Guests, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201115

Leuchs,  G.
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sanchez-Soto, L. L., Klimov, A. B., de la Hoz, P., & Leuchs, G. (2013). Quantum versus classical polarization states: when multipoles count. SI, 46(10): 104011. doi:10.1088/0953-4075/46/10/104011.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-6769-1
Abstract
We advocate a simple multipole expansion of the polarization density matrix. The resulting multipoles are used to construct bona fide quasiprobability distributions that appear as a sum of successive moments of the Stokes variables, the first one corresponding to the classical picture on the Poincare sphere. We employ the particular case of the Q function to formulate a whole hierarchy of measures that properly assess higher-order polarization correlations.