Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique

MPG-Autoren
/persons/resource/persons201021

Broenstrup,  Gerald
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201040

Christiansen,  Silke
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Leiterer, C., Broenstrup, G., Jahr, N., Urban, M., Arnold, C., Christiansen, S., et al. (2013). Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique. JOURNAL OF NANOPARTICLE RESEARCH, 15(5): 1628. doi:10.1007/s11051-013-1628-z.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6781-7
Zusammenfassung
One major challenge for the technological use of nanostructures is the control of their electrical and optoelectronic properties. For that purpose, extensive research into the electrical characterization and therefore a fast and reliable way of contacting these structures are needed. Here, we report on a new, dielectrophoresis (DEP)-based technique, which enables to apply sufficient and reliable contact to individual nanostructures, like semiconducting nanowires (NW), easily and without the need for lithography. The DEP contacting technique presented in this article can be done without high-tech equipment and monitored in situ with an optical microscope. In the presented experiments, individual SiNWs are trapped and subsequently welded between two photolithographically pre-patterned electrodes by applying varying AC voltages to the electrodes. To proof the quality of these contacts, I-V curves, photoresponse and photoconductivity of a single SiNW were measured. Furthermore, the measured photoconductivity in dependence on the wavelength of illuminated light and was compared with calculations predicting the absorption spectra of an individual SiNW.