English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhanced Raman Scattering of Graphene using Arrays of Split Ring Resonators

MPS-Authors
/persons/resource/persons201176

Sarau,  George
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201008

Banzer,  Peter
Interference Microscopy and Nanooptics, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201226

Vollmer,  Frank
Vollmer Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201040

Christiansen,  Silke
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sarau, G., Lahiri, B., Banzer, P., Gupta, P., Bhattacharya, A., Vollmer, F., et al. (2013). Enhanced Raman Scattering of Graphene using Arrays of Split Ring Resonators. ADVANCED OPTICAL MATERIALS, 1(2), 151-157. doi:10.1002/adom.201200053.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-67B3-8
Abstract
Combining graphene with plasmonic nanostructures is currently being explored for high sensitivity biochemical detection based on the surface-enhanced Raman scattering (SERS) effect. Here, a novel and tunable platform for understanding SERS based on graphene monolayers transferred on arrays of split ring resonators (SRRs) exhibiting resonances in the visible range is introduced. Raman enhancement factors per area of graphene of up to 75 are measured, demonstrating the strong plasmonic coupling between graphene and the metamaterial resonances. Apart from the incident laser light, both the photoluminescence signal emitted by the SRRs and the Raman scattered light from graphene contribute to the excitation of distinct resonances, resulting in different SERS. This new perspective allows control of SERS in the case of graphene on plasmonic metamaterials or nanostructures and potentially paves the way towards an advanced SERS substrate that could lead to the detection of single molecules attached to graphene in future biochemical sensing devices.