English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optomechanical Nonlinearity in Dual-Nanoweb Structure Suspended Inside Capillary Fiber

MPS-Authors
/persons/resource/persons201022

Butsch,  A.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201103

Kang,  M. S.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201057

Euser,  T. G.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201108

Koehler,  J. R.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201164

Rammler,  S.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201105

Keding,  R.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  P. St J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Butsch, A., Kang, M. S., Euser, T. G., Koehler, J. R., Rammler, S., Keding, R., et al. (2012). Optomechanical Nonlinearity in Dual-Nanoweb Structure Suspended Inside Capillary Fiber. PHYSICAL REVIEW LETTERS, 109(18): 183904. doi:10.1103/PhysRevLett.109.183904.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-685D-4
Abstract
A novel kind of nanostructured optical fiber, displaying an extremely high and optically broadband optomechanical nonlinearity, is presented. It comprises two closely spaced ultrathin glass membranes (webs) suspended in air and attached to the inner walls of a glass fiber capillary. Light guided in this dual-web structure can exert attractive or repulsive pressure on the webs, causing them to be pushed together or pulled apart. The elastic deflection of the webs is, in turn, coupled to the electromagnetic field distribution and results in a change in the effective refractive index within the fiber. Employing a pump-probe technique in an interferometric setup, optomechanically induced refractive index changes more than 10(4) times larger than the Kerr effect are detected. Theoretical estimates of the optomechanical nonlinearity agree well with the experimental results. The dual-web fiber combines the sensitivity of a microoptomechanical device with the versatility of an optical fiber and could trigger new developments in the fields of nonlinear optics, optical metrology, and sensing.