English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Far-Field Imaging for Direct Visualization of Light Interferences in GaAs Nanowires

MPS-Authors
/persons/resource/persons201021

Broenstrup,  Gerald
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201040

Christiansen,  Silke
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Grange, R., Broenstrup, G., Kiometzis, M., Sergeyev, A., Richter, J., Leiterer, C., et al. (2012). Far-Field Imaging for Direct Visualization of Light Interferences in GaAs Nanowires. NANO LETTERS, 12(10), 5412-5417. doi:10.1021/nl302896n.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-687F-7
Abstract
The optical and electrical characterization of nanostructures is crucial for all applications in nanophotonics. Particularly important is the knowledge of the optical near-field distribution for the design of future photonic devices. A common method to determine optical near-fields is scanning near-field optical microscopy (SNOM) which is slow and might distort the near-field. Here, we present a technique that permits sensing indirectly the infrared near-field in GaAs nanowires via its second-harmonic generated (SHG) signal utilizing a nonscanning far-field microscope. Using an incident light of 820 nm and the very short mean free path (16 nm) of the SHG signal in GaAs, we demonstrate a fast surface sensitive imaging technique without using a SNOM. We observe periodic intensity patterns in untapered and tapered GaAs nanowires that are attributed to the fundamental mode of a guided wave modulating the Mie-scattered incident light. The periodicity of the interferences permits to accurately determine the nanowires' radii by just using optical microscopy, i.e., without requiring electron microscopy.