English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Probabilistic cloning of coherent states without a phase reference

MPS-Authors
/persons/resource/persons201135

Mueller,  Christian R.
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201234

Wittmann,  Christoffer
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201059

Filip,  Radim
Max Planck Research Group, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201126

Marquardt,  Christoph
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201000

Andersen,  Ulrik L.
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mueller, C. R., Wittmann, C., Marek, P., Filip, R., Marquardt, C., Leuchs, G., et al. (2012). Probabilistic cloning of coherent states without a phase reference. PHYSICAL REVIEW A, 86(1): 010305. doi:10.1103/PhysRevA.86.010305.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-68AD-0
Abstract
We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based solely on a phase-randomized displacement and photon counting, omitting the need for nonclassical resources and nonlinear materials. In an experimental implementation, we employ the scheme to clone coherent states from a phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones can be approached asymptotically. This simultaneously demonstrates how the effect of loss on coherent states can be compensated via noiseless preamplification.