Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A 2D Quantum Walk Simulation of Two-Particle Dynamics

MPG-Autoren
/persons/resource/persons201185

Schreiber,  Andreas
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201168

Rohde,  Peter P.
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201112

Laiho,  Kaisa
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201196

Silberhorn,  Christine
Silberhorn Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schreiber, A., Gabris, A., Rohde, P. P., Laiho, K., Stefanak, M., Potocek, V., et al. (2012). A 2D Quantum Walk Simulation of Two-Particle Dynamics. SCIENCE, 336(6077), 55-58. doi:10.1126/science.1218448.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002D-68D7-1
Zusammenfassung
Multidimensional quantum walks can exhibit highly nontrivial topological structure, providing a powerful tool for simulating quantum information and transport systems. We present a flexible implementation of a two-dimensional (2D) optical quantum walk on a lattice, demonstrating a scalable quantum walk on a nontrivial graph structure. We realized a coherent quantum walk over 12 steps and 169 positions by using an optical fiber network. With our broad spectrum of quantum coins, we were able to simulate the creation of entanglement in bipartite systems with conditioned interactions. Introducing dynamic control allowed for the investigation of effects such as strong nonlinearities or two-particle scattering. Our results illustrate the potential of quantum walks as a route for simulating and understanding complex quantum systems.