English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors

MPS-Authors
/persons/resource/persons201040

Christiansen,  Silke
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Paska, Y., Stelzner, T., Christiansen, S., & Haick, H. (2011). Enhanced Sensing of Nonpolar Volatile Organic Compounds by Silicon Nanowire Field Effect Transistors. ACS NANO, 5(7), 5620-5626. doi:10.1021/nn201184c.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-69C3-5
Abstract
Silicon nanowire field effect transistors (Si NW FETs) are emerging as powerful sensors for direct detection of biological and chemical species. However, the low sensitivity of the Si NW FET sensors toward nonpolar volatile organic compounds (VOCs) Is problematic for many applications. In this study, we show that modifying Si NW FETs with a silane monolayer having a low fraction of S1-O-Si bonds between the adjacent molecules greatly enhances the sensitivity toward nonpoiar VOCs. This can be explained in terms of an indirect sensor -VOC interaction, whereby the nonpolar VOC molecules induce conformational changes in the organic monoiayer, affecting (i) the dielectric constant and/or effective dipole moment of the organic monolayer and/or (ii) the density of charged surface states at the SiO(2)/monolayer interface. In contrast, polar VOCs are sensed directly via VOC-induced changes in the Si NW charge carriers, most probably due to electrostatic interaction between the Si NW and polar VOCs. A semiempirical model for the VOC-induced conductivity changes in the Si NW FETs is presented and discussed.