English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers

MPS-Authors
/persons/resource/persons201114

Lee,  H. W.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201182

Schmidt,  M. A.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201100

Joly,  N. Y.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201217

Tyagi,  H. K.
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201218

Uebel,  P.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  P. St. J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lee, H. W., Schmidt, M. A., Russell, R. F., Joly, N. Y., Tyagi, H. K., Uebel, P., et al. (2011). Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. OPTICS EXPRESS, 19(13), 12180-12189. doi:10.1364/OE.19.012180.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-69C7-E
Abstract
We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications. (C) 2011 Optical Society of America