English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Thermal blinding of gated detectors in quantum cryptography

MPS-Authors
/persons/resource/persons201234

Wittmann,  Christoffer
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201053

Elser,  Dominique
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Thermal blinding of gated detectors in quantum cryptography. OPTICS EXPRESS, 18(26), 27938-27954. doi:10.1364/OE.18.027938.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6A79-3
Abstract
It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [Nat. Photonics 4, 686 (2010)]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch. (C) 2010 Optical Society of America