English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hacking commercial quantum cryptography systems by tailored bright illumination

MPS-Authors
/persons/resource/persons201234

Wittmann,  Christoffer
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201053

Elser,  Dominique
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. NATURE PHOTONICS, 4(10), 686-689. doi:10.1038/NPHOTON.2010.214.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-6AA5-1
Abstract
The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics(1-4). So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons(5). Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.