Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Environment-assisted quantum-information correction for continuous variables

MPG-Autoren
/persons/resource/persons201172

Sabuncu,  Metin
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201059

Filip,  Radim
Max Planck Research Group, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201115

Leuchs,  Gerd
Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201000

Andersen,  Ulrik L.
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sabuncu, M., Filip, R., Leuchs, G., & Andersen, U. L. (2010). Environment-assisted quantum-information correction for continuous variables. PHYSICAL REVIEW A, 81(1): 012325. doi:10.1103/PhysRevA.81.012325.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6B7B-C
Zusammenfassung
Quantum-information protocols are inevitably affected by decoherence which is associated with the leakage of quantum information into an environment. In this article we address the possibility of recovering the quantum information from an environmental measurement. We investigate continuous-variable quantum information, and we propose a simple environmental measurement that under certain circumstances fully restores the quantum information of the signal state although the state is not reconstructed with unit fidelity. We implement the protocol for which information is encoded into conjugate quadratures of coherent states of light and the noise added under the decoherence process is of Gaussian nature. The correction protocol is tested using both a deterministic as well as a probabilistic strategy. The potential use of the protocol in a continuous-variable quantum-key distribution scheme as a means to combat excess noise is also investigated.