English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The security of practical quantum key distribution

MPS-Authors
/persons/resource/persons201118

Luetkenhaus,  Norbert
Max Planck Research Group, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dusek, M., Luetkenhaus, N., & Peev, M. (2009). The security of practical quantum key distribution. REVIEWS OF MODERN PHYSICS, 81(3), 1301-1350. doi:10.1103/RevModPhys.81.1301.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6BD1-A
Abstract
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on an eavesdropper's power. This article provides a concise up-to-date review of QKD, biased toward the practical side. Essential theoretical tools that have been developed to assess the security of the main experimental platforms are presented (discrete-variable, continuous-variable, and distributed-phase-reference protocols).