Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres

MPG-Autoren
/persons/resource/persons201171

Russell,  P. St. J.
Max Planck Research Group, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201100

Joly,  N.
Max Planck Research Group, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dainese, P., Russell, P. S. J., Joly, N., Knight, J. C., Wiederhecker, G. S., Fragnito, H. L., et al. (2006). Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. NATURE PHYSICS, 2(6), 388-392. doi:10.1038/nphys315.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6D98-B
Zusammenfassung
Wavelength-scale periodic microstructuring dramatically alters the optical properties of materials. An example is glass photonic crystal fibre(1) ( PCF), which guides light by means of a lattice of hollow micro/nanochannels running axially along its length. In this letter, we explore stimulated Brillouin scattering in PCFs with subwavelength-scale solid silica glass cores. The large refractive-index difference between air and glass allows much tighter confinement of light than is possible in all-solid single-mode glass optical fibres made using conventional techniques. When the silica-air PCF has a core diameter of around 70% of the vacuum wavelength of the launched laser light, we find that the spontaneous Brillouin signal develops a highly unusual multi-peaked spectrum with Stokes frequency shifts in the 10-GHz range. We attribute these peaks to several families of guided acoustic modes each with different proportions of longitudinal and shear strain, strongly localized to the core(2,3). At the same time, the threshold power for stimulated Brillouin scattering(4) increases fivefold. The results show that Brillouin scattering is strongly affected by nanoscale microstructuring, opening new opportunities for controlling light-sound interactions in optical fibres.