English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

SDO/HMI survey of emerging active regions for helioseismology

MPS-Authors
/persons/resource/persons104199

Schunker,  Hannah
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103834

Birch,  A. C.
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103857

Burston,  R. B.
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons103925

Gizon,  L.
Department Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schunker, H., Braun, D. C., Birch, A. C., Burston, R. B., & Gizon, L. (2016). SDO/HMI survey of emerging active regions for helioseismology. Astronomy and Astrophysics, 595: A107. doi:10.1051/0004-6361/201628388.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-1A37-E
Abstract
Context. Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which would enable us to perform statistical analyses. Aims. Our goal is to collate a uniform data set of emerging active regions observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region is centred on a 60° × 60° area and can be observed up to seven days before emergence. Methods. We restricted the sample to active regions that were visible in the continuum and emerged into quiet Sun largely avoiding pre-existing magnetic regions. As a reference data set we paired a control region (CR), with the same latitude and distance from central meridian, with each emerging active region (EAR). The control regions do not have any strong emerging flux within 10° of the centre of the map. Each region was tracked at the Carrington rotation rate as it crossed the solar disk, within approximately 65° from the central meridian and up to seven days before, and seven days after, emergence. The mapped and tracked data, consisting of line-of-sight velocity, line-of-sight magnetic field, and intensity as observed by SDO/HMI, are stored in datacubes that are 410 min in duration and spaced 320 min apart. We call this data set, which is currently comprised of 105 emerging active regions observed between May 2010 and November 2012, the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. Results. To demonstrate the utility of a data set of a large number of emerging active regions, we measure the relative east-west velocity of the leading and trailing polarities from the line-of-sight magnetogram maps during the first day after emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that, on average, the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 121 ± 22 m s-1 (−70 ± 13 m s-1) relative to the Carrington rotation rate in the first day. However, relative to the differential rotation of the surface plasma, the east-west velocity is symmetric, with a mean of 95 ± 13 m s-1. Conclusions. The SDO/HEAR data set will not only be useful for helioseismic studies, but will also be useful to study other features such as the surface magnetic field evolution of a large sample of EARs. We intend to extend this survey forwards in time to include more EARs observed by SDO/HMI.