English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

In vitro cancer cell–ECM interactions inform in vivo cancer treatment

MPS-Authors
/persons/resource/persons189311

Holle,  Andrew W.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons189321

Young,  Jennifer L.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Holle, A. W., Young, J. L., & Spatz, J. P. (2016). In vitro cancer cell–ECM interactions inform in vivo cancer treatment. Advanced Drug Delivery Reviews, 97, 270-279. doi:10.1016/j.addr.2015.10.007.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-C1C6-2
Abstract
The general progression of cancer drug development involves in vitro testing followed by safety and efficacy evaluation in clinical trials. Due to the expense of bringing candidate drugs to trials, in vitro models of cancer cells and tumor biology are required to screen drugs. There are many examples of drugs exhibiting cytotoxic behavior in cancer cells in vitro but losing efficacy in vivo, and in many cases, this is the result of poorly understood chemoresistant effects conferred by the cancer microenvironment. To address this, improvedmethods for culturing cancer cells in biomimetic scaffolds have been developed; along theway, a great deal about the nature of cancer cell-extracellular matrix (ECM) interactions has been discovered. These discoveries will continue to be leveraged both in the development of novel drugs targeting these interactions and in the fabrication of biomimetic substrates for efficient cancer drug screening in vitro.