Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A molecular mechanotransduction pathway regulates collective migration of epithelial cells

MPG-Autoren
/persons/resource/persons118693

Das,  Tamal
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons75304

Böhm,  Heike
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Das, T., Safferling, K., Rausch, S., Grabe, N., Böhm, H., & Spatz, J. P. (2015). A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology, 17(3), 276-287. doi:10.1038/ncb3115.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0025-6C80-8
Zusammenfassung
Collective movement of epithelial cells drives essential multicellular organization during various fundamental physiological processes encompassing embryonic morphogenesis, cancer and wound healing. Yet the molecular mechanism that ensures the coordinated movement of many cells remains elusive. Here we show that a tumour suppressor protein, merlin, coordinates collective migration of tens of cells, by acting as a mechanochemical transducer. In a stationary epithelial monolayer and also in three-dimensional human skin, merlin localizes to cortical cell-cell junctions. During migration initiation, a fraction of cortical merlin relocalizes to the cytoplasm. This relocalization is triggered by the intercellular pulling force of the leading cell and depends on the actomyosin-based cell contractility. Then in migrating cells, taking its cue from the intercellular pulling forces, which show long-distance ordering, merlin coordinates polarized Rac1 activation and lamellipodium formation on the multicellular length scale. Together, these results provide a distinct molecular mechanism linking intercellular forces to collective cell movements in migrating epithelia.