English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Freely drawn single lipid nanotube patterns

MPS-Authors
/persons/resource/persons145187

Sugihara,  Kaori
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76018

Rustom,  Amin
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sugihara, K., Rustom, A., & Spatz, J. P. (2015). Freely drawn single lipid nanotube patterns. Soft Matter, 11(10), 2029-2035. doi:10.1039/C5SM00043B.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-6C7D-1
Abstract
LNTs are unique 3D structures made only of safe and abundant biomaterials by self-assembly. The current bottleneck for developing applications using LNTs is the lack of an easy technique to pattern them on substrates. We report a method to free-draw single lipid nanotube (LNT) patterns in any shape on surfaces with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) that takes an inverted hexagonal (HII) phase. We used pre-self-assembled LNTs or HII lipid blocks as a lipid reservoir from which new LNTs were pulled by applying a point load with a micromanipulator. The extreme simplicity of our technique originates from the fundamental nature of DOPE lipids that prefer a HII phase, while all the conventional approaches use PC lipids that form a lamellar phase. By adjusting the surface properties with polyelectrolyte multilayers, the created single LNT objects are able to remain adhered to the surface for over a week. Importantly, it could be shown that two vesicles loaded with caged fluorescent molecules were able to fuse well with a LNT, enabling diffusive transport of uncaged fluorescent molecules from one vesicle to the other.