English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Fine tuning and efficient T cell activation with stimulatory aCD3 nano-arrays

MPS-Authors
/persons/resource/persons128427

Matic,  Jovana
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons75387

Deeg,  Janosch
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Matic, J., Deeg, J., Scheffold, A., Goldstein, I., & Spatz, J. P. (2013). Fine tuning and efficient T cell activation with stimulatory aCD3 nano-arrays. Nano Letters, 13(11), 5090-5097. doi:10.1021/nl4022623.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-1009-B
Abstract
Anti-CD3 (aCD3) nanoarrays fabricated by self-assembled nanopatterning combined with site-directed protein immobilization techniques represent a novel T cell stimulatory platform that allows tight control over ligand orientation and surface density. Here, we show that activation of primary human CD4+ T cells, defined by CD69 upregulation, IL-2 production and cell proliferation, correlates with aCD3 density on nanoarrays. Immobilization of aCD3 through nanopatterning had two effects: cell activation was significantly higher on these surfaces than on aCD3-coated plastics and allowed unprecedented fine-tuning of T cell response.