日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays

MPS-Authors
/persons/resource/persons75790

Louban,  Ilia
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons75952

Plath,  Nicole
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Polleux, J., Rasp, M., Louban, I., Plath, N., Feldhoff, A., & Spatz, J. P. (2011). Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays. ACS Nano, 5(8), 6355-6364. doi:10.1021/nn201470f.


引用: https://hdl.handle.net/11858/00-001M-0000-0010-4DEB-F
要旨
Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns.