English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Activation of integrin function by nanopatterned adhesive interfaces

MPS-Authors
/persons/resource/persons75226

Arnold,  Marco
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons75354

Cavalcanti-Adam,  Elisabetta Ada
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

/persons/resource/persons75499

Glass,  Roman
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons75300

Blümmel,  Jacques
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Arnold, M., Cavalcanti-Adam, E. A., Glass, R., Blümmel, J., Eck, W., Kantlehner, M., et al. (2004). Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem, 5(3), 383-388. doi:10.1002/cphc.200301014.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0010-2BD1-4
Abstract
To study the function behind the molecular arrangement of single integrins in cell adhesion, we designed a hexagonally close-packed rigid template of cell-adhesive gold nanodots coated with cyclic RGDfK peptide by using block-copolymer micelle nanolithography. The diameter of the adhesive dots is < 8 nm, which allows the binding of one integrin per dot. These dots are positioned with high precision at 28, 58, 73, and 85 nm spacing at interfaces. A separation of > or = 73 nm between the adhesive dots results in limited cell attachment and spreading, and dramatically reduces the formation of focal adhesion and actin stress fibers. We attribute these cellular responses to restricted integrin clustering rather than insufficient number of ligand molecules in the cell-matrix interface since "micro-nanopatterned" substrates consisting of alternating fields with dense and no nanodots do support cell adhesion. We propose that the range between 58-73 nm is a universal length scale for integrin clustering and activation, since these properties are shared by a variety of cultured cells.