日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Assessment of the ATP binding properties of Hsp90

MPS-Authors
/persons/resource/persons94928

Reinstein,  Jochen
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

External Resource

http://www.jbc.org/content/271/17/10035.full.pdf
(全文テキスト(全般))

https://dx.doi.org/10.1074/jbc.271.17.10035
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Jakob, U., Scheibel, T., Bose, S., Reinstein, J., & Buchner, J. (1996). Assessment of the ATP binding properties of Hsp90. The Journal of Biological Chemistry, 271(17), 10035-10041. doi:10.1074/jbc.271.17.10035.


引用: https://hdl.handle.net/11858/00-001M-0000-002C-2641-4
要旨
Hsp90, one of the most prominent proteins in eucaryotic cells under physiological and stress conditions, chaperones protein folding reactions in an ATP-independent way. Surprisingly, ATP binding and ATPase activity of Hsp90 has been reported by several groups. To clarify this important issue, we have reinvestigated the potential ATP binding properties and ATPase activity of highly purified Hsp90 using a number of different techniques. Hsp90 was compared to the well characterized ATP-binding chaperone Hsc70 and to two control proteins, immunoglobulin G and bovine serum albumin, that are known to not bind ATP. Hsp90 behaved very similarly to the non-ATP-binding proteins and very differently from the ATP-binding protein Hsc70. Like bovine serum albumin and immunoglobulin G, Hsp90 (i) did not bind to immobilized ATP, (ii) could not be specifically photocross-linked with azido-ATP, (iii) failed to exhibit significant changes in intrinsic protein fluorescence upon ATP addition, and (iv) did not bind to three fluorescent ADP analogues. In contrast, Hsc70 strongly bound ATP and ADP, specifically cross-linked with azido-ATP, and exhibited major shifts in fluorescence upon addition of ATP. Finally, reexamination of the amino acid sequence of Hsp90 failed to reveal any significant homologies to known ATP-binding motifs. Taken together, we conclude that highly purified Hsp90 does not bind ATP. Weak ATPase activities associated with Hsp90 preparations may be due to minor impurities or kinases copurifying with Hsp90.