Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Photoinduced electron transfer in Langmuir-Blodgett films.

MPG-Autoren
/persons/resource/persons14766

Ahuja,  R.
Research Group of Molecular Organized Systems, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15538

Möbius,  D.
Research Group of Molecular Organized Systems, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2376503.pdf
(Verlagsversion), 284KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ahuja, R., & Möbius, D. (1989). Photoinduced electron transfer in Langmuir-Blodgett films. Thin Solid Films, 179, 457-462. doi:10.1016/0040-6090(89)90221-6.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-27B0-4
Zusammenfassung
Photoinduced electron transfer from an excited donor molecule (oxacyanine) to an acceptor molecule (viologen) located at the same interface in monolayer assemblies has been studied by measuring steady state fluorescence quenching and the excited state decay of the donor molecule. Donor and acceptor molecules are incorporated in matrix monolayers of arachidic acid and methyl arachidate, with a molar ratio 9:1. It is seen that the electron transfer efficiency increases with increasing donor density (σd=0.005−0.425 nm−2). The fluorescence decay functions of the donor are described by assuming at least two fluorescent species and the results show that the contribution of long-lived species increases with increasing donor density. The average rate constant for the excited state electron transfer depends on the donor density and was found to be 2×108s−1 (σa = 0.025nm−2; σd = 0.005 nm−2). The results are rationalized in terms of energy delocalization via incoherent exciton hopping.