English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

What determines the distribution of ahallow convective mass flux through cloud base?

MPS-Authors
/persons/resource/persons133338

Sakradzija,  Mirjana
Hans Ertel Research Group Clouds and Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons59492

Hohenegger,  Cathy
Hans Ertel Research Group Clouds and Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

jas-d-16-0326.1.pdf
(Publisher version), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Sakradzija, M., & Hohenegger, C. (2017). What determines the distribution of ahallow convective mass flux through cloud base? Journal of the Atmospheric Sciences, 74, 2615-2632. doi:10.1175/JAS-D-16-0326.1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-2F8C-3
Abstract
The distribution of cloud-base mass flux is studied using large-eddy simulations (LESs) of two reference cases: one representing conditions over the tropical ocean and another one representing midlatitude conditions over land. To examine what sets the difference between the two distributions, nine additional LES cases are set up as variations of the two reference cases. It is found that the total surface heat flux and its changes over the diurnal cycle do not influence the distribution shape. The latter is also not determined by the level of organization in the cloud field. It is instead determined by the ratio of the surface sensible heat flux to the latent heat flux, that is, the Bowen ratio B. This ratio sets the thermodynamic efficiency of the moist convective heat cycle, which determines the portion of the total surface heat flux that can be transformed into mechanical work of convection against mechanical dissipation. The thermodynamic moist heat cycle sets the average mass flux per cloud 〈m〉, and through 〈m〉 it also controls the shape of the distribution. An expression for 〈m〉 is derived based on the moist convective heat cycle and is evaluated against LES. This expression can be used in shallow cumulus parameterizations as a physical constraint on the mass flux distribution. The similarity between the mass flux and the cloud area distributions indicates that B also has a role in shaping the cloud area distribution, which could explain its different shapes and slopes observed in previous studies.