English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A roadmap for improving the representation of photosynthesis in Earth system models

MPS-Authors
/persons/resource/persons62433

Kattge,  Jens
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62612

Zaehle,  Sönke
Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Prof. Dr. Martin Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rogers, A., Medlyn, B. E., Dukes, J. S., Bonan, G., von Caemmerer, S., Dietze, M. C., et al. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytologist, 213(1), 22-42. doi:10.1111/nph.14283.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-30ED-2
Abstract
Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO2 assimilation (A) to key environmental variables: light, temperature, CO2 concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models.