Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Cubic interactions of Maxwell-like higher spins


Mkrtchyan,  Karapet
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 649KB

(Publisher version), 685KB

Supplementary Material (public)
There is no public supplementary material available

Francia, D., Monaco, G. L., & Mkrtchyan, K. (2017). Cubic interactions of Maxwell-like higher spins. Journal of high energy physics: JHEP, 2017(04): 068. doi:10.1007/JHEP04(2017)068.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-3987-F
We study the cubic vertices for Maxwell-like higher-spins in flat space. Reducibility of their free spectra implies that a single cubic vertex involving any three fields subsumes a number of couplings among different particles of various spins. The resulting vertices do not involve traces of the fields and in this sense are simpler than their Fronsdal counterparts. We propose an extension of both the free theory and of its cubic deformation to a more general class of partially reducible systems, that one can obtain from the original theory upon imposing trace constraints of various orders. The key to our results is a version of the Noether procedure allowing to systematically account for the deformations of the transversality conditions to be imposed on the gauge parameters at the free level.