English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantum Feedback Cooling of a Mechanical Oscillator Using Variational Measurements:Tweaking Heisenberg's Microscope

MPS-Authors

Habibi,  Hojat
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Zeuthen,  Emil
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons124270

Hammerer,  Klemens
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1604.05097.pdf
(Preprint), 5MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Habibi, H., Zeuthen, E., Ghanaatshoar, M., & Hammerer, K. (2016). Quantum Feedback Cooling of a Mechanical Oscillator Using Variational Measurements:Tweaking Heisenberg's Microscope. Journal of Optics, 18(8): 084004. doi:10.1088/2040-8978/18/8/084004.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-3F92-1
Abstract
We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg's microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity $C_{\text{q}}\gtrsim1$, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.