English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Capturing Functionally Relevant Protein Motions at the Atomic Level: Femtosecond Time Resolved Serial Crystallography of Ligand Dissociation of Carboxy-Myoglobin

MPS-Authors
/persons/resource/persons136037

Marx,  Alexander
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136028

Epp,  Sascha W.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136024

Miller,  R. J. Dwayne
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Müller-Werkmeister, H. M., Kuo, A., Ginn, H. M., Oghbaey, S., Sarracini, A., Pare-Labrosse, O., et al. (2016). Capturing Functionally Relevant Protein Motions at the Atomic Level: Femtosecond Time Resolved Serial Crystallography of Ligand Dissociation of Carboxy-Myoglobin. Biophysical Journal, 110(3), 513a. doi:10.1016/j.bpj.2015.11.2745.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-44F7-B
Abstract
The recent advent of X-Ray free electron lasers with highest brilliance and femtosecond pulses opens new possibilities for time-resolved protein crystallography [Miller, R.J.D, Science, 2014, 343, 1108-1116]. A fundamental biophysical question becomes accessible experimentally now: The investigation of protein dynamics with all atomic resolution on the shortest biochemically relevant timescale around 100 fs. Here is where bond-breaking events occur, which in turn translate into secondary and tertiary structure changes and cause a protein to fulfill its function over a wide range of timescales.