Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts

MPG-Autoren
/persons/resource/persons192099

Dietrich,  Tim
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1612.03665.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dietrich, T., & Ujevic, M. (2017). Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Classical and Quantum Gravity, 34(10): 105014. doi:10.1088/1361-6382/aa6bb0.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-4BBF-F
Zusammenfassung
In addition to the emission of gravitational waves (GWs) the coalescence and
merger of two neutron stars will produce a variety of electromagnetic (EM)
signals. In this work we combine a large set of numerical relativity
simulations performed by different groups and we present fits for the mass,
kinetic energy, and the velocities of the dynamical ejected material.
Additionally, we comment on the geometry and composition of the ejecta and
discuss the influence of the stars' individual rotation.
The derived fits can be used to approximate the luminosity and lightcurve of
the kilonovae (macronovae) and to estimate the main properties of the radio
flares. This correlation between the binary parameters and the EM signals
allows in case of a GW detection to approximate possible EM counterparts when
first estimates of the masses are available. After a possible kilonovae
observation our results could also be used to restrict the region of the
parameter space which has to be covered by numerical relativity simulations.