English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex

MPS-Authors
/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95439

Sprengel,  Rolf
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Toyoda, H., Zhao, M.-G., Ulzhöfer, B., Wu, L.-J., Xu, H., Seeburg, P. H., et al. (2009). Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex. Molecular Pain, 5: 46, pp. 1-15. doi:10.1186/1744-8069-5-46.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-4F83-4
Abstract
Cortical areas including the anterior cingulate cortex (ACC) are important for pain and pleasure. Recent studies using genetic and physiological approaches have demonstrated that the investigation of basic mechanism for long-term potentiation (LTP) in the ACC may reveal key cellular and molecular mechanisms for chronic pain in the cortex. Glutamate N-methyl D-aspartate (NMDA) receptors in the ACC are critical for the induction of LTP, including both NR2A and NR2B subunits. However, cellular and molecular mechanisms for the expression of ACC LTP have been less investigated. Here, we report that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, GluA1 but not GluA2 contributes to LTP in the ACC using genetic manipulated mice lacking GluA1 or GluA2 gene. Furthermore, GluA1 knockout mice showed decreased extracellular signal-regulated kinase (ERK) phosphorylation in the ACC in inflammatory pain models in vivo. Our results demonstrate that AMPA receptor subunit GluA1 is a key mechanism for the expression of ACC LTP and inflammation-induced long-term plastic changes in the ACC.