Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride-like Materials for More Efficient Solar Hydrogen and Oxygen Evolution

MPG-Autoren
/persons/resource/persons22243

Willinger,  Marc Georg
Department of Colloid Chemistry Max-Planck Institute of Colloids and Interfaces;
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Savateev, A., Pronkin, S., Epping, J. D., Willinger, M. G., Wolff, C., Neher, D., et al. (2017). Potassium Poly(heptazine imides) from Aminotetrazoles: Shifting Band Gaps of Carbon Nitride-like Materials for More Efficient Solar Hydrogen and Oxygen Evolution. ChemCatChem, 9(1), 167-174. doi:10.1002/cctc.201601165.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-5583-8
Zusammenfassung
Potassium poly(heptazine imide) (PHI) is a photocatalytically active carbon nitride material that was recently prepared from substituted 1,2,4-triazoles. Here, we show that the more acidic precursors, such as commercially available 5-aminotetrazole, upon pyrolysis in LiCl/KCl salt melt yield PHI with the greatly improved structural order and thermodynamic stability. Tetrazole-derived PHIs feature long-range crystallinities and unconventionally small layer stacking distances, leading to the altered electronic band structures as shown by Mott–Schottky analyses. Under the optimized synthesis conditions, visible-light driven hydrogen evolution rates reach twice the rate provided by the previous gold standard, mesoporous graphitic carbon nitride, which has a much higher surface area. More interestingly, the up to 0.7 V higher valence band potential of crystalline PHI compared with ordinary carbon nitrides makes it an efficient water oxidation photocatalyst, which works even in the absence of any metal-based co-catalysts under visible light. To our knowledge, this is the first case of metal-free oxygen liberation from water.