Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Topological Dirac semimetal phase in Pd and Pt oxides


Yan,  Binghai
Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Li, G., Yan, B., Wang, Z., & Held, K. (2017). Topological Dirac semimetal phase in Pd and Pt oxides. Physical Review B, 95(3): 035102, pp. 1-7. doi:10.1103/PhysRevB.95.035102.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-5637-C
Topological Dirac semimetals (DSMs) exhibit nodal points through which energy bands disperse linearly in three-dimensional (3D) momentum space, a 3D analog of graphene. The first experimentally confirmed DSMs with a pair of Dirac points (DPs), Na3Bi and Cd3As2, show topological surface Fermi arc states and exotic magnetotransport properties, boosting the interest in the search for stable and nontoxic DSM materials. Based on density-functional theory and dynamical mean-field theory calculations, we predict a family of palladium and platinum oxides to be robust 3D DSMs with three pairs of Dirac points that are well separated from bulk bands. The Fermi arcs at the surface display a Lifshitz transition upon a continuous change of the chemical potential. Corresponding oxides are already available as high-quality single crystals, an excellent precondition for the verification of our predictions by photoemission and magnetotransport experiments, extending DSMs to the versatile family of transition-metal oxides.