English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Automatic LQR Tuning Based on Gaussian Process Global Optimization

MPS-Authors
/persons/resource/persons191975

Marco Valle,  Alonso
Dept. Autonomous Motion, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84387

Hennig,  Philipp
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons85081

Bohg,  Jeannette
Dept. Autonomous Motion, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons76037

Schaal,  Stefan
Dept. Autonomous Motion, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons118771

Trimpe,  Sebastian
Dept. Autonomous Motion, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Marco Valle, A., Hennig, P., Bohg, J., Schaal, S., & Trimpe, S. (2016). Automatic LQR Tuning Based on Gaussian Process Global Optimization. In A. Okamura (Ed.), Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 270-277). New York, NY, USA: IEEE. doi:10.1109/ICRA.2016.7487144.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-1D71-D
Abstract
There is no abstract available