Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Deficient amygdala–prefrontal intrinsic connectivity after effortful emotion regulation in borderline personality disorder


Baczkowski,  Blazej
Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands;
Max Planck Research Group Neuroanatomy and Connectivity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Baczkowski, B., van Zutphen, L., Siep, N., Jacob, G. A., Domes, G., Maier, S., et al. (2017). Deficient amygdala–prefrontal intrinsic connectivity after effortful emotion regulation in borderline personality disorder. European Archives of Psychiatry and Clinical Neuroscience, 267(6), 551-565. doi:10.1007/s00406-016-0760-z.

Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-606C-7
Emotion instability in borderline personality disorder (BPD) has been associated with an impaired fronto-limbic inhibitory network. However, functional connectivity (FC) underlying altered emotion regulation in BPD has yet to be established. Here, we used resting-state fMRI to investigate enduring effects of effortful emotion regulation on the amygdala intrinsic FC in BPD. In this multicenter study, resting-state fMRI was acquired before and after an emotion regulation task in 48 BPD patients and 39 non-patient comparison individuals. The bilateral amygdalae were used as a seed in the whole-brain FC analysis and two-way mixed ANOVA to test whether BPD patients exhibited weaker post-task increase in the amygdala intrinsic FC with the prefrontal cortex (PFC), compared to non-patients. Subsequently, we explored whether the results are common for personality disorders characterized by emotional problems, using additional data of 21 cluster-C personality disorder patients. In contrast to non-patients, BPD patients failed to show increased post-task amygdala resting-state FC with the medial, dorsolateral, ventrolateral PFC, and superior temporal gyrus, but surprisingly exhibited decreased FC with the posterior cingulate cortex and increased FC with the superior parietal lobule. In BPD patients, the emotion regulation task failed to increase resting-state amygdala FC with brain regions essential for effortful emotion regulation, which suggests: (a) altered cognitive control typically used to indirectly alleviate distress by reinterpreting the meaning of emotional stimuli; (b) impaired direct regulation of emotional responses, which might be common for personality disorders; (c) avoidance of self-related appraisals induced by social emotional stimuli.