English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Wild tobacco genomes reveal the evolution of nicotine biosynthesis

MPS-Authors
/persons/resource/persons59523

Xu,  Shuqing
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons199939

Brockmoeller,  Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3880

Gase,  Klaus
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons73639

Ling,  Zhihao
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons138058

Zhou,  Wenwu
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons202650

Kreitzer,  Christoph
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4083

Pandey,  Shree Prakash
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

Locator

http://dx.doi.org/10.1101/107565
(Publisher version)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
Citation

Xu, S., Brockmoeller, T., Navarro-Quezada, A., Kuhl, H., Gase, K., Ling, Z., et al. (2017). Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 6133-6138. doi:10.1101/107565.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-6138-4
Abstract
Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and N. obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinic acid dinucleotide (NAD) pathways. While the duplication of the former is shared among several Solanaceous genera which produce polyamine-derived tropane alkaloids, the innovation and efficient production of nicotine in the genus Nicotiana required lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor (ERF) that activates the expression of all nicotine biosynthetic genes. Furthermore, TE insertions that incorporated transcription factor binding motifs also likely contributed to the coordinated metabolic flux of the nicotine biosynthetic pathway. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.