Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Loading and plotting of cortical surface representations in Nilearn

MPG-Autoren
/persons/resource/persons195482

Huntenburg,  Julia M.
Max Planck Research Group Neuroanatomy and Connectivity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Neurocomputation and Neuroimaging Unit, FU Berlin, Germany;

/persons/resource/persons188671

Liem,  Franz
Max Planck Research Group Neuroanatomy and Connectivity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (frei zugänglich)

Huntenburg_Abraham_2017.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Huntenburg, J. M., Abraham, A., Loula, J., Liem, F., Dadi, K., & Varoquaux, G. (2017). Loading and plotting of cortical surface representations in Nilearn. Research Ideas and Outcomes, 3: e12342. doi:10.3897/rio.3.e12342.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-002C-8886-5
Zusammenfassung
Processing neuroimaging data on the cortical surface traditionally requires dedicated heavy-weight software suites. Here, we present an initial support of cortical surfaces in Python within the neuroimaging data processing toolbox Nilearn. We provide loading and plotting functions for different surface data formats with minimal dependencies, along with examples of their application. Limitations of the current implementation and potential next steps are discussed.