English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Trends in indices of daily temperature and precipitations extremes in Morocco

MPS-Authors
/persons/resource/persons101301

Tanarhte,  M.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Filahi, S., Tanarhte, M., Mouhir, L., El Morhit, M., & Tramblay, Y. (2016). Trends in indices of daily temperature and precipitations extremes in Morocco. Theoretical and Applied Climatology, 124(3-4), 959-972. doi:10.1007/s00704-015-1472-4.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-E87F-1
Abstract
The purpose of this paper is to provide a summary of Morocco's climate extreme trends during the last four decades. Indices were computed based on a daily temperature and precipitation using a consistent approach recommended by the ETCCDI. Trends in these indices were calculated at 20 stations from 1970 to 2012. Twelve indices were considered to detect trends in temperature. A large number of stations have significant trends and confirm an increase in temperature, showing increased warming during spring and summer seasons. The results also show a decrease in the number of cold days and nights and an increase in the number of warm days and nights. Increasing trends have also been found in the absolute warmest and coldest temperatures of the year. A clear increase is detected for warm nights and diurnal temperature range. Eight indices for precipitation were also analyzed, but the trends for these precipitation indices are much less significant than for temperature indices and show more mixed spatial patterns of change. Heavy precipitation events do not exhibit significant trends except at a few locations, in the north and central parts of Morocco, with a general tendency towards drier conditions. The correlation between these climate indices and the large-scale atmospheric circulations indices such as the NAO, MO, and WEMO were also analyzed. Results show a stronger relationship with these climatic indices for the precipitation indices compared to the temperature indices. The correlations are more significant in the Atlantic regions, but they remain moderate at the whole country scale.