Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH.

MPG-Autoren
/persons/resource/persons136471

Roeloffs,  V. B.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons181076

Wang,  X.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons39417

Sumpf,  T.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons85321

Untenberger,  M.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15968

Voit,  D.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15082

Frahm,  J.
Biomedical NMR Research GmbH, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roeloffs, V. B., Wang, X., Sumpf, T., Untenberger, M., Voit, D., & Frahm, J. (2016). Model-based reconstruction for T1 mapping using single-shot inversion-recovery radial FLASH. International Journal of Imaging Systems and Technology, 26(4), 254-263. doi:10.1002/ima.22196.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-8E8E-9
Zusammenfassung
Quantitative parameter mapping in MRI is typically performed as a two-step procedure where serial imaging is followed by pixelwise model fitting. In contrast, model-based reconstructions directly reconstruct parameter maps from raw data without explicit image reconstruction. Here, we propose a method that determines T1 maps directly from multi-channel raw data as obtained by a single-shot inversion-recovery radial FLASH acquisition with a Golden Angle view order. Joint reconstruction of a T1, spin-density and flip-angle map is formulated as a nonlinear inverse problem and solved by the iteratively regularized Gauss-Newton method. Coil sensitivity profiles are determined from the same data in a preparatory step of the reconstruction. Validations included numerical simulations, in vitro MRI studies of an experimental T1 phantom, and in vivo studies of brain and abdomen of healthy subjects at a field strength of 3 T. The results obtained for a numerical and experimental phantom demonstrated excellent accuracy and precision of model-based T1 mapping. In vivo studies allowed for high-resolution T1 mapping of human brain (0.5–0.75 mm in-plane, 4 mm section thickness) and liver (1.0 mm, 5 mm section) within 3.6–5 s. In conclusion, the proposed method for model-based T1 mapping may become an alternative to two-step techniques, which rely on model fitting after serial image reconstruction. More extensive clinical trials now require accelerated computation and online implementation of the algorithm.