English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Craniofacial sexual dimorphism patterns and allometry among extant hominids

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schaefer, K., Mitteroecker, P., Gunz, P., Bernhard, M., & Bookstein, F. L. (2004). Craniofacial sexual dimorphism patterns and allometry among extant hominids. Annals of Anatomy, 186(5), 471-478. doi:10.1016/S0940-9602(04)80086-4.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-91DE-2
Abstract
Craniofacial sexual dimorphism in primates varies in both magnitude and pattern among species. In the past two decades, there has been an increasing emphasis in exploring the correlations of these patterns with taxonomy and the variation in patterns within and among the craniofacial regions. Scrutinising these relationships for hominids, we decompose the craniofacial morphology in five taxa: Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. 3D coordinates of 35 traditional landmarks and 61 semilandmarks, covering five ridge curves, are measured for each of 268 adult and sub-adult specimens and analysed using geometric morphometric methods. A multivariate analysis in size-shape space shows that ontogenetic scaling contributes to the development of sexual dimorphism in all five taxa, but to a varying extent. In absolute as well as in relative terms P. pygmaeus shows the greatest allometric component, followed by G. gorilla. Homo is intermediate, while in Pan the non-allometric constituent part contributes a large fraction to the actual sexual dimorphism, most markedly in the pygmy chimpanzee. An eigendecomposition of the five vectors of sexual dimorphism reveals two dimensions independent of allometry. One separates orang-utan sexual dimorphism from the African apes and Homo, and the other differentiates between the great apes and Homo with Pan mediating. We discuss these patterns and speculate on their use as characters for taxonomic analysis in the fossil record.