English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

C=C π bond modified graphitic carbon nitride films for enhanced photoelectrochemical cell performance

MPS-Authors
/persons/resource/persons192355

Bian,  Juncao
Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121860

Shalom,  Menny
Menny Shalom, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bian, J., Xi, L., Li, J., Xiong, Z., Huang, C., Lange, K., et al. (2017). C=C π bond modified graphitic carbon nitride films for enhanced photoelectrochemical cell performance. Chemistry – An Asian Journal, 12(9), 1005-1012. doi:10.1002/asia.201700178.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002D-2C67-E
Abstract
Applications of graphitic carbon nitride (g-CN) in photoelectrochemical and optoelectronic devices are still hindered due to the difficulties in synthesis of g-CN films with tunable chemical, physical and catalytic properties. Herein we present a general method to alter the electronic and photoelectrochemical properties of g-CN films by annealing. We found that N atoms can be removed from the g-CN networks after annealing treatment. Assisted by theoretical calculations, we confirm that upon appropriate N removal, the adjacent C atoms will form new C=C π bonds. Detailed calculations demonstrate that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are localized at the structure unit with C=C π bonds and the electrons are more delocalized. Valence band X-ray photoelectron spectroscopy spectra together with the absorption spectra unveil that the structure changes result in the alteration of the g-CN energy levels and position of band edges. Our results show that the photocurrent density of the annealed g-CN film is doubled compared with the pristine one, thanks to the better charge separation and transport within the film induced by the new C=C π bonds. An ultrathin TiO2 film (2.2 nm) is applied as stabilizer and the photocurrent density is kept at 0.05 mA/cm2 at 1.23 V vs. reversible hydrogen electrode after two-cycle stability assessment. This work enables the applications of g-CN films in many electronic and optoelectronic devices.