English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Chlorinated glycopeptide antibiotic peptide precursors improve cytochrome P450-catalyzed cyclization cascade efficiency

MPS-Authors
/persons/resource/persons117962

Peschke,  Madeleine
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117956

Brieke,  Clara
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92561

Cryle,  Max
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
Citation

Peschke, M., Brieke, C., Goode, R. J. A., Schittenhelm, R. B., & Cryle, M. (2017). Chlorinated glycopeptide antibiotic peptide precursors improve cytochrome P450-catalyzed cyclization cascade efficiency. Biochemistry, 56(9), 1239-1247. doi:10.1021/acs.biochem.6b01102.


Cite as: http://hdl.handle.net/11858/00-001M-0000-002C-B6C4-5
Abstract
The activity of glycopeptide antibiotics (GPAs) depends upon important structural modifications to their precursor heptapeptide backbone: specifically, the cytochrome P450-catalyzed oxidative cross-linking of aromatic side chains as well as the halogenation of specific residues within the peptide. The timing of halogenation and its effect on the cyclization of the peptide are currently unclear. Our results show that chlorination of peptide precursors improves their processing by P450 enzymes in vitro, which provides support for GPA halogenation occurring prior to peptide cyclization during nonribosomal peptide synthesis. We could also determine that the activity of the second enzyme in the oxidative cyclization cascade, OxyA, remains higher for chlorinated peptide substrates even when the biosynthetic GPA product possesses an altered chlorination pattern, which supports the role of the chlorine atoms in orienting the peptide substrate in the active site of these enzymes.