Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Weakly and strongly coupled Belousov-Zhabotinsky patterns


Weiß,  Stefan
Research Group Clusterdynamik, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Weiß, S., & Deegan, R. D. (2017). Weakly and strongly coupled Belousov-Zhabotinsky patterns. Physical Review E, 95(2): 022215. doi:10.1103/PhysRevE.95.022215.

Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-C45D-2
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.