Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The role of local instabilities in fluid invasion into permeable media

MPG-Autoren
/persons/resource/persons203899

Singh,  Kamaljit
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173646

Scholl,  Hagen
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121177

Brinkmann,  Martin
Group Theory of wet random assemblies, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121851

Seemann,  Ralf
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Singh, K., Scholl, H., Brinkmann, M., Di Michiel, M., Scheel, M., Herminghaus, S., et al. (2017). The role of local instabilities in fluid invasion into permeable media. Scientific Reports, 7: 444. doi:10.1038/s41598-017-00191-y.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-DF09-1
Zusammenfassung
Wettability is an important factor which controls the displacement of immiscible fluids in permeable
media, with far reaching implications for storage of CO2 in deep saline aquifers, fuel cells, oil recovery,
and for the remediation of oil contaminated soils. Considering the paradigmatic case of random
piles of spherical beads, fluid front morphologies emerging during slow immiscible displacement
are investigated in real time by X-ray micro–tomography and quantitatively compared with model
predictions. Controlled by the wettability of the bead matrix two distinct displacement patterns are
found. A compact front morphology emerges if the invading fluid wets the beads while a fingered
morphology is found for non–wetting invading fluids, causing the residual amount of defending fluid
to differ by one order of magnitude. The corresponding crossover between these two regimes in terms
of the advancing contact angle is governed by an interplay of wettability and pore geometry and can
be predicted on the basis of a purely quasi–static consideration of local instabilities that control the
progression of the invading interface.