Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet

MPG-Autoren
/persons/resource/persons203921

Zelezny,  J.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Saidl, V., Nemec, P., Wadley, P., Hills, V., Campion, R. P., Novak, V., et al. (2017). Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nature Photonics, 11(2), 91-96. doi:10.1038/NPHOTON.2016.255.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-E03C-A
Zusammenfassung
Recent breakthroughs in the electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices(1-10). Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to insensitivity to magnetic field perturbations, multi-level stability, ultrafast spin dynamics and other favourable characteristics, and may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and ultrashort magnetization dynamics timescales make antiferromagnets notoriously difficult to study using common magnetometers or magnetic resonance techniques. Here, we demonstrate the experimental determination of the Neel vector in a thin film of antiferromagnetic CuMnAs (refs 9,10), a prominent material used in the first realization of antiferromagnetic memory chips(10). We use a table-top femtosecond pump probe magneto-optical experiment that is considerably more accessible than the traditionally employed large-scale-facility techniques such as neutron diffraction(11) and X-ray magnetic dichroism measurements(12-16).